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HEAT TRANSFER FROM A SPHERICAL SOURCE 

IN A RAREFIED GAS 

A. E. Margilevskii, V. G. Chernyak, 
and P. E. Suetin 

UDC 533.6.011.8 

The heat-transfer problem from a sphere in a rarefied gas is solved using a 
model kinetic equation. Diffuse scattering of gas molecules by the sphere 
surface with arbitrary energy accomodation is assumed. 

A solution of the heat-transfer problem from a sphere in a rarefied gas with arbitrary 
values of the Knudsen number Kn was published in [i, 2]. Lees [i] used his own four-moment 
method for solution of the Boltzmann equation. In [2] the BGK model equation was used and 
complete energy accomodation of gas molecules on the sphere surface was assumed. 

In the present study an approximate equation of higher order [3] will be used, ensur- 
ing a correct value for the Prandtl number. For the boundary condition we will assume arbi- 
trary molecular energy accomodation on the sphere surface. Such a solution is of interest, 
first, so that model equations may be compared, second, to evaluate the accuracy of the four- 
moment method, and third, to provide a quantitative estimate of the energy accomodation coef- 
ficient for various gases when theory and experiment are compared. 

We will consider a sphere of radius Re, the temperature of which, Ts, differs from the 
gas temperature T~ in the undisturbed region, while T s = (T s -- T~)/T~ << i. Then the state 
of the gas is described by a distribution function close to Maxwellian: 

f (r, v) = [| [ 1 + h (r, v)], [!hit-< 1, 

( m 3/2 ( mv~ ) 
f | 1 7 4  exp - -  , 2nkT~ . 2kT~ (1) 

where n~ is the numerical gas density in the unperturbed region and k is Boltzmann's con- 
stant. 
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Fig. io Reduced thermal flux Q* versus gas rarefaction param- 
eter R for complete energy accomodation (a.= i): i) present 
study; 2) BGK [2]; 3) four-moment method [I]; 4) experimental 
data for air [5]. 

Fig. 2. Reduced thermal flux Q* versus energy accomodation 
coefficient a for various R: i) R=0.3; 2) 0.5; 3) 1.0; 4) 
2.0; 5) 3.0; 6) 5.0; 7)7.0; 8) i0.0; 9) 20.0; i0) 50.0. 

Let the molecules scatter from the spherical surface completely diffusely with a Max- 
well distribution function corresponding to a temperature T + and density n +. After linear- 
ization, the boundary condition is written in the form 

[(Ro, C)~ /,,, [1-]- 5 -}- ( C2--'~-~ ) ' ] ,  (nc)>O, 

(2) 
Fn )1 /2  

e = v ,  5 = (n  + - -  n . ) / n  oo, ? = ( T  + - -  T | 1 7 4  
2kT.  

where n is the external normal to the boundary surface. 

The constants 6 and y are defined by the condition of nonpenetration of the surface 
and in terms of the energy accomodation coefficient 

IN-I = IN+l, a - - I E - I -  IE+! , (3) 
I E - I -  IE~I 

where N-, ~ a r e  t h e  m o l e c u l a r  f l u x e s  i n c i d e n t  upon and r e f l e c t e d  from the  s p h e r i c a l  s u r -  
f a c e ;  E- ,  E +, e n e r g y  f l u x e s  a r r i v i n g  a t  and d e p a r t i n g  from the  w a l l ;  Es,  d e p a r t i n g  ene rgy  
flux when the gas is in thermal equilibrium with the sphere. 

Following Eq. (i), the kinetic equation with model collision term from [3] is linear- 
ized and written in the following form 

C = %' + ( C  2 -  T "-}- C r !C 2 - -  Q - - - h ,  (4) 

where 

(r) ---- n - -  n_______~ _ n_3,,2 , exp ( - -  d-) hdc; 
n~ 

T--T. 2_3/2,exp(_cz)(c2_ 3) 
~: (r) -: T ~  -- 3 -~- hdc; 

4 [m 1/~ q(r) _ 4 - 3 / 2  -cZ __~ hdr 
Q (r) = --~ 2kT .  n ~kT~ 15 " 

Here n and T a r e  t h e  l o c a l  v a l u e s  of  t h e  n u m e r i c a l  d e n s i t y  and gas  t e m p e r a t u r e ;  q, r a d i a l  
h e a t  f l u x  d e n s i t y ;  and the  d i m e n s i o n l e s s  r a d i a l  c o o r d i n a t e  r i s  r e f e r e n c e d  to  t he  v a l u e  

(5) 
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With consideration of boundary condition (2), Eq. (4) is written in integral form, and 
then with the aid of Eq. (5) is transformed into a closed system of integral moment equa- 
tions, which can be expressed conveniently in matrix form 

X = AX + B, (6) 

where 

X = [  ; A X - -  3 , , 2  . } r - - r ' l  - - - - T ;  

I t ~ Q )  

D = 

2 3 I i )  i ,  V - ~ ( I , _ _ -  ~- , 

1/ -~- I~ --.--~- I, -$ 15 - -  313 -~ --~ I, -+ 
/ / 

I , , - - - i / ~  . ( n n ' )  --U-~ |/ --$ 4 - -  4t,~ + - T  = ( n f Y )  

~ o  

.215 (&--JL).9.')2 -, i 

I"1-5 ~/ ~ &--4t~-~--4-- ~ (n'a') - 

4 4-- 51~ -[- I3 (n~')(n'a') [ 
15 ' - T  

~ I . , '  1' I ~ - - - - - 3  In 

)]t 
i 

[( ( 2 5 ~ - - 5 '  I 7 - - 4 1 ~ +  I3 (n~) !  6 4 - Z 4  ) 

(7) 

In(S ) .... .i" t" exp (, ---i 2 - -  -~-) dr; 

F ' t l '  F' 11 , ~ r - -  F o ~, r - -  r' 
= - - ,  = - - "  = ~ ;  - - - ;  ( 8 )  

r r '  i r - -  roI i r  - -  r' l 
ro is the radius vector of the sphere surface; the argument of the function I n in Eq. (7) 
is Ir -- r'I, but in Eq. (8), Ir -- ro[; ~o is the solid angle in which the sphere is vis- 
ible from point r; the integration range V is that part of space, all points of which can 
be connected to the tip of the radius vector r by a straight line which does not intersect 
the sphere. 

Using the definitions of the quantities appearing in Eq. (3) from [4], it is simple to 
obtain a pair of equations of the following form 

2 I / - ~ R  2 s - - T ,  dr d~ [ v I . , + T ( L - - - -  I~ - - Q ( I 5  -~ I3 (nO), 
' 2 - -  ~ 'v'~ , " \ 2 " - -  ( 9 )  

V o (0~ 

4 V ~ R "  ~ ~ _ _  , . . . . .  3 , , ~  ,~ ,., , -. , - - - ~  - -  , . , ~. i a 2(1- -a)  z'~ dr d(o vL 4- z 16 l,, Q 1 7 - - - $  I~ (nO), (10) 
Vo (~ o 

where R- ~#~ Ro ].,r~ 1 
2 l -- 2 Kn-~; e~6---22 (Ts--T); V~ is all the space about the sphere; and 

the argument of the functions I n is [r -- ro[. 
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The value of the radial thermal flux is determined from the last equation of Eq. (6). 
In this expression it is necessary to set r =R and integrate over the sphere surface. Then, 
with consideration of Eqs. (9), (I0), we have: 

Q0 1 ~ ~s , (ii) 

where Qo is the free molecular value of Q, equal to 

4~ R z 

1 5 j ~  r ~ ~" 

Thus,  t h e  problem has  been  r educed  to  t h e  s o l u t i o n  of  a sys t em of  Fredholm i n t e g r a l  
e q u a t i o n s  (6 ) .  S ince  t h e  i n t e g r a n d s  a r e  symmet r i c ,  t h e  v a r i a t i o n  method of  [2"] may be u s e d .  

We consider a function of the form 

F(X, ~, y) = (EX, ~ --A'X - -  2B) --}- C ~  2 ~- C5~ z -  2 d ~ - -  2dsy , (12) 

where 

I 0 0) 

E= 0 1 0 ; 

0 0--I 

and the scalar product of two arbitrary functions f and g is determined by the formula 

(f, g ) =  .( fgdr; 
Vo 

the coefficients C4,, C5~, d,, d5 are chosen to make the function stationary for indepen- 
dent variation of X, ~, y: 

C~ = 2 V.~R 2, C~5 - 4 t / E R  z d~ = --V,~R2T,,  
1 - - a '  

d5 = 4 / ~ R  2. a~, 

E q u a t i o n  (12) t a k e s  on a s t a t i o n a r y  v a l u e  when X, e,  y s a t i s f y  Eqs.  (6 ) ,  (9 ) ,  

s t a t  F (R ,  e,  ~)  = F (X,  ~, ~) = - -  V ~  R2~ + 1 - -  ~ T~ " 

Comparison w i t h  Eq~ (11) g i v e s  

l + 7 e  s ta tF Q* + 
8a (1 -- =) 4 VKR2a~ 

F o l l o w i n g  [ 2 ] ,  t e s t  f u n c t i o n s  a r e  chosen  from the  c o n d i t i o n  o f  a c c u r a t e  a s y m p t o t i c  
b e h a v i o r  of  t h e  c o r r e s p o n d i n g  m a c r o s c o p i c  q u a n t i t i e s  i n  t he  N a v i e r - - S t o k e s  r e g i o n  

Substituting Eq. (15) in Eq. 
t 

(12) , we 

5 

i=1  

Xl 

9. r ) 

o b t a i n  

5 

(13) 

(i0), i.e., 

(14) 

(15) 

(16) 

The coefficients Cij , d i are cumbersome in form and will not be present here. 

The constants X i are defined to make Eq. (16) stationary: 

OF = 0 ;  i = l ,  2, 3, 4, 5. 
8X~ 

(17) 
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The formulas obtained above can be used for calculations only when ~ # i. The case 
of complete energy accomodation (a = i) requires individual examination. To do this, it is 
sufficient to set y = Ts, while to solve system (6) together with the nonpenetration condi- 
tion (9), Eq. (12) may be used with Css = ds = 0. The remaining treatment remains the same 
as before. 

Asymptotic analysis of Eq. (14) as R§ 0 or R >> 1 gives the free molecular and con- 
tinual values of Q*, equal to 

Q*(R--+O)--+ I, Q*(R ~ I, a)= 15V-~[ ( 8 ~  3.;60)--R--3"323]-~ I + j , (18) 

respectively, which coincides with the results of [I, 2] for ~=i. 

In the intermediate regime Q* is defined numerically to an accuracy of not less than 
0.2%. 

Figure 1 presents a comparison of the results of the present study at ~ = 1 (curve i) 
with those of [i] (curve 3) and [2] (curve 2), and also with experimenta; data for air [5]. 
The discrepancy between the results obtained with the S-model kinetic equation and the BGK 
model of [2] does not exceed %3%. Such agreement indicates the satisfactory agreement of 
the model equations. However, it should be noted that such agreement occurs only with a 
special choice of the collision parameter in the BGK model. The collision frequency must 
be selected such that the model properly describes thermal flux relaxation in the gas. 
It is obvious that this approach is impossible in description of phenomena produced by 
both the thermal conductivity and viscosity of the gas simultaneously. In such problems 
the S-model kinetic equation isto be preferred. 

Comparison of the present results with the four-moment method of [I] shows their com- 
plete agreement in the continual and free-molecular heat transfer regimes. However, in 
the intermediate region their disagreement reaches ~12%, due to the approximations of the 
four-moment method. 

Comparison of the theory for a = 1 with experimental data for air [5] indicates satis- 
factory agreement for R ~ 2. Unfortunately, the experimental technique used did not permit 
measurements at low pressure, since the effect of the external volume became appreciable 
and the experimental points showed wide scattering. 

Figure 2 shows the dependence of the dimensionless quantity Q* upon energy accomoda- 
tion coefficient a for various values of the gas rarefaction parameter R. With decrease in 

toward zero Q* increases to unity independent of R, but since then Qo § 0, the thermal 
flux Q § 0, which is an obvious result for an absolutely nonaccomodating sphere. It is 
also evident from Fig. 2 that Q* depends weakly on ~ at R ~ 0.5. This means that in the 
range R~ 0.5 the thermal flux Q can be considered approximately proportional to ~. 

In conclusion, we note that comparison of the solution obtained with reliable experi- 
mental data could provide information on energy accomodation coefficients for gas-surface 
interactions. 

NOTATION 

Ro, sphere radius; n, numerical density of gas molecules; T, gas temperature; ~, 
energy accomodation coefficient; r, dimensionless radial coordinate; l, mean molecular free 
path length; R =~Ro/21, gas rarefaction parameter; m, molecular mass; v, molecular velo- 
city; q, thermal flux density. 
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